Search results for "Mellin inversion theorem"

showing 4 items of 4 documents

Fractional differential equations solved by using Mellin transform

2014

In this paper, the solution of the multi-order differential equations, by using Mellin Transform, is proposed. It is shown that the problem related to the shift of the real part of the argument of the transformed function, arising when the Mellin integral operates on the fractional derivatives, may be overcame. Then, the solution may be found for any fractional differential equation involving multi-order fractional derivatives (or integrals). The solution is found in the Mellin domain, by solving a linear set of algebraic equations, whose inverse transform gives the solution of the fractional differential equation at hands.

Numerical AnalysisMellin transformApplied MathematicsMathematical analysisRamanujan's master theoremIntegral equationFractional differential equationFractional calculusWiener–Hopf methodsymbols.namesakeMathematics - Analysis of PDEsSelf-similarity of inverse Mellin transform.Modeling and SimulationLaplace transform applied to differential equationssymbolsMellin inversion theoremFOS: MathematicsTwo-sided Laplace transformMellin transformMathematicsAnalysis of PDEs (math.AP)
researchProduct

Probabilistic characterization of nonlinear systems under Poisson white noise via complex fractional moments

2014

In this paper, the probabilistic characterization of a nonlinear system enforced by Poissonian white noise in terms of complex fractional moments (CFMs) is presented. The main advantage in using such quantities, instead of the integer moments, relies on the fact that, through the CFMs the probability density function (PDF) is restituted in the whole domain. In fact, the inverse Mellin transform returns the PDF by performing integration along the imaginary axis of the Mellin transform, while the real part remains fixed. This ensures that the PDF is restituted in the whole range with exception of the value in zero, in which singularities appear. It is shown that using Mellin transform theorem…

Mellin transformApplied MathematicsMechanical EngineeringMonte Carlo methodMathematical analysisProbabilistic logicAerospace EngineeringOcean EngineeringProbability density functionWhite noiseComplex fractional moment Kolmogorov-Feller Mellin transform Poisson white noise Probability density functionNonlinear systemLinear differential equationControl and Systems EngineeringMellin inversion theoremElectrical and Electronic EngineeringMathematics
researchProduct

Mellin transform approach for the solution of coupled systems of fractional differential equations

2015

In this paper, the solution of a multi-order, multi-degree-of-freedom fractional differential equation is addressed by using the Mellin integral transform. By taking advantage of a technique that relates the transformed function, in points of the complex plane differing in the value of their real part, the solution is found in the Mellin domain by solving a linear set of algebraic equations. The approximate solution of the differential (or integral) equation is restored, in the time domain, by using the inverse Mellin transform in its discretized form.

Numerical AnalysisMellin transformLaplace transformApplied MathematicsMathematical analysisMulti degree of freedom systemsRamanujan's master theoremIntegral equationFractional differential equationWiener–Hopf methodsymbols.namesakeModeling and SimulationLaplace transform applied to differential equationsComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONsymbolsMellin inversion theoremTwo-sided Laplace transformMellin transformMathematicsCommunications in Nonlinear Science and Numerical Simulation
researchProduct

Constructing transient response probability density of non-linear system through complex fractional moments

2014

Abstract The probability density function for transient response of non-linear stochastic system is investigated through the stochastic averaging and Mellin transform. The stochastic averaging based on the generalized harmonic functions is adopted to reduce the system dimension and derive the one-dimensional Ito stochastic differential equation with respect to amplitude response. To solve the Fokker–Plank–Kolmogorov equation governing the amplitude response probability density, the Mellin transform is first implemented to obtain the differential relation of complex fractional moments. Combining the expansion form of transient probability density with respect to complex fractional moments an…

Mellin transformLaplace transformApplied MathematicsMechanical EngineeringMathematical analysisProbability density functionComplex fractional momentStochastic differential equationNonlinear systemTransient responseMellin transform.Mechanics of MaterialsOrdinary differential equationProbability density functionStochastic averagingMellin inversion theoremTwo-sided Laplace transformNon-linear stochastic systemMathematics
researchProduct